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The infection process is individual

Infection: Depends on transmission bottlenecks, how 
infectious was the infector.

Pathogen replication: Multiple strains, initial dosage.

Immune response: Cross-immunity, vaccination, immuno-
compromised.

These are “outcomes”

They are functions of an individual, not a 
universal measure of everyone.

 
They impact population level dynamics and 

will be different for each individual.



Outline

Introduction

Hybrid methodology

What can we do?



Outline

Hybrid methodology



Outline



What is a hybrid method?



What is a hybrid method?

IDEA: Split some aspect of your model to use different modelling paradigms:



What is a hybrid method?

IDEA: Split some aspect of your model to use different modelling paradigms:

Spatial



What is a hybrid method?

IDEA: Split some aspect of your model to use different modelling paradigms:

SpeciesSpatial



What is a hybrid method?

IDEA: Split some aspect of your model to use different modelling paradigms:

SpeciesSpatial Operators

DIFFUSION

REACTIONS



What is a hybrid method?

IDEA: Split some aspect of your model to use different modelling paradigms:

SpeciesSpatial Operators

DIFFUSION

REACTIONS



Hybrid methodology



Hybrid methodology



Hybrid methodology



Hybrid methodology



Hybrid methodology



Hybrid methodology



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology

Time

V
ir

a
l 

L
o

a
d

Im
m

u
n

e
 r

e
sp

o
n

se



Hybrid methodology



Hybrid methodology

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

ODEs



Hybrid methodology

Within-host dynamics

Each individual has their 
own ODE system;

Internal state determines 
transmission, recovery, 

virulence;

𝑑𝑾𝑖

𝑑𝑇𝑖
= 𝒇𝑊(𝑾𝑖 , 𝜽𝑊, 𝑇𝑖)

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

ODEs ODEs



Hybrid methodology

Within-host dynamics

Each individual has their 
own ODE system;

Internal state determines 
transmission, recovery, 

virulence;

𝑑𝑾𝑖

𝑑𝑇𝑖
= 𝒇𝑊(𝑾𝑖 , 𝜽𝑊, 𝑇𝑖)

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

Transmission

𝛽(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Recovery

𝛾(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Virulence

𝛼(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

ODEs ODEs



Hybrid methodology

Within-host dynamics

Each individual has their 
own ODE system;

Internal state determines 
transmission, recovery, 

virulence;

𝑑𝑾𝑖

𝑑𝑇𝑖
= 𝒇𝑊(𝑾𝑖 , 𝜽𝑊, 𝑇𝑖)

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

Transmission

𝛽(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Recovery

𝛾(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Virulence

𝛼(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Natural mortality

ODEs ODEs
SSA



Hybrid methodology

Within-host dynamics

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

Transmission

𝛽(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Recovery

𝛾(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Virulence

𝛼(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Natural mortalityODEs

ODEs
SSAExample

Let 𝑃𝑖(𝑇𝑖) be the pathogen 
count of individual 𝑖 for an 
infection of age 𝑇𝑖. Then:

𝑑𝑃𝑖
𝑑𝑇𝑖

= 𝑟𝑃𝑖 1 −
𝑃𝑖
𝐾



Hybrid methodology

Within-host dynamics

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

Recovery

𝛾(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Virulence

𝛼(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Natural mortalityODEs

ODEs
SSAExample

Let 𝑃𝑖(𝑇𝑖) be the pathogen 
count of individual 𝑖 for an 
infection of age 𝑇𝑖. Then:

𝑑𝑃𝑖
𝑑𝑇𝑖

= 𝑟𝑃𝑖 1 −
𝑃𝑖
𝐾

Transmission

𝛽 𝑃𝑖 = 𝛽1𝑃𝑖



Hybrid methodology

Within-host dynamics

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.

Virulence

𝛼(𝑾𝑖 , 𝜽𝐶 , 𝑇𝑖)

Natural mortalityODEs

ODEs
SSAExample

Let 𝑃𝑖(𝑇𝑖) be the pathogen 
count of individual 𝑖 for an 
infection of age 𝑇𝑖. Then:

𝑑𝑃𝑖
𝑑𝑇𝑖

= 𝑟𝑃𝑖 1 −
𝑃𝑖
𝐾

Transmission

𝛽 𝑃𝑖 = 𝛽1𝑃𝑖

Recovery

𝛾 𝑃𝑖 = 0



Hybrid methodology

Within-host dynamics

Host demographics

All host demographics 
calculated here;

At their simplest, they
might be:

ሶ𝑆 = 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆,
ሶ𝐼 = −𝑏𝐼,
ሶ𝑅 = −𝑏𝑅.Natural mortalityODEs

ODEs
SSAExample

Let 𝑃𝑖(𝑇𝑖) be the pathogen 
count of individual 𝑖 for an 
infection of age 𝑇𝑖. Then:

𝑑𝑃𝑖
𝑑𝑇𝑖

= 𝑟𝑃𝑖 1 −
𝑃𝑖
𝐾

Transmission

𝛽 𝑃𝑖 = 𝛽1𝑃𝑖

Recovery

𝛾 𝑃𝑖 = 0

Virulence

𝛼 𝑃𝑖 = 𝛼1𝑃𝑖
2



Hybrid methodology

Within-host dynamics

Host demographics

Natural mortalityODEs

ODEs
SSAExample

Let 𝑃𝑖(𝑇𝑖) be the pathogen 
count of individual 𝑖 for an 
infection of age 𝑇𝑖. Then:

𝑑𝑃𝑖
𝑑𝑇𝑖

= 𝑟𝑃𝑖 1 −
𝑃𝑖
𝐾

Transmission

𝛽 𝑃𝑖 = 𝛽1𝑃𝑖

Recovery

𝛾 𝑃𝑖 = 0

Virulence

𝛼 𝑃𝑖 = 𝛼1𝑃𝑖
2

Let 𝑆 𝑡  and 𝐼(𝑡) be the 
density of susceptible and 

infected individuals 

respectively, 𝑡 days after the 
initial infection. Then:

𝑑𝑆

𝑑𝑡
= 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆

𝑑𝐼

𝑑𝑡
= −𝑏𝐼
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What can we track for each individual?

Within-host state

Infection history

ACGTCAA
ACGTGAA

Mutation history

Who infects who?

Timings of infection

Which variant?
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To the future…

Complex 
behaviour

Additional host classes (exposed etc.).
Interactions between pathogen and microbiome.
Fitness to phylogeny.

Super 
infection

Can multiple pathogens exist within a host?
Transmission bottlenecks?
Selection at multiple scales.

Spatial 
components

Phylogeny and space.
Do we get different clusters?
Can we trace backwards?
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Random mutations.

Comparison of results with implicit WHDs – parasite/symbiont.

Python package/GUI to easily simulate epidemics.

Comparisons with experimental data.

Tools for phylogenetics/tree reconstruction - TransPhylo package in R.

Theoretical results - 𝑅0, fitness functions…
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Thank you!

Get in touch!

cs640@bath.ac.uk 
(live from next week!)

cameronsmith50.github.io

Efficient coupling of within- and 
between-host infectious disease 
dynamics
C.A. Smith and B. Ashby
Journal of Theoretical Biology

Ben Ashby
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Since we have individuals, we can track genetic data and trace an exact phylogeny.

500 individuals, 8b genome, 10−4 mutation rate. 5000 individuals, 150b genome, 5 × 10−4 
mutation rate.
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