Modelling of infections at within- and between-host levels

Cameron Smith April 16th, 2025

Hybrid methodology

What can we do?

Seven challenges in modeling pathogen dynamics within-host and across scales Gog *et al.* (2015)

In general we cannot (or do not wish to) model multi-scale processes in full mechanistic detail, and even simulating such models becomes computationally intractable. Can we come up with ways of extracting the essence of lower-scale models so that they can be embedded into higherscale models efficiently (Mideo *et al.*, 2008)?

> Seven challenges in modeling pathogen dynamics within-host and across scales Gog *et al.* (2015)

N. Mideo *et al.* (2008) Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases, *Trends in Ecology and Evolution*

In general we cannot (or do not wish to) model multi-scale processes in full mechanistic detail, and even simulating such models becomes computationally intractable. <u>Can we come up with</u> <u>ways of extracting the essence of lower-scale</u> <u>models so that they can be embedded into higher-</u> <u>scale models efficiently (Mideo et al., 2008)</u>?

> Seven challenges in modeling pathogen dynamics within-host and across scales Gog *et al.* (2015)

N. Mideo *et al.* (2008) Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases, *Trends in Ecology and Evolution*

The infection process is individual

Infection: Depends on transmission bottlenecks, how infectious was the infector.

Pathogen replication: Multiple strains, initial dosage.

Immune response: Cross-immunity, vaccination, immunocompromised.

The infection process is individual

Infection: Depends on transmission bottlenecks, how infectious was the infector.

Pathogen replication: Multiple strains, initial dosage.

Immune response: Cross-immunity, vaccination, immunocompromised.

These are "outcomes"

They are functions of an individual, not a universal measure of everyone.

They impact population level dynamics and will be different for each individual.

The infection process is individual

Infection: Depends on transmission bottlenecks, how infectious was the infector.

Pathogen replication: Multiple strains, initial dosage.

Immune response: Cross-immunity, vaccination, immunocompromised.

Hybrid methodology

What can we do?

Host demographics

All host demographics calculated here;

At their simplest, they might be:

Within-host dynamics

Each individual has their own ODE system;

Internal state determines transmission, recovery, virulence;

Host demographics

All host demographics calculated here;

At their simplest, they might be:

$$\dot{S} = N(a - qN) - bS,$$

$$\dot{I} = -bI,$$

$$\dot{R} = -bR.$$

Within-host dynamics

Each individual has their own ODE system;

Internal state determines transmission, recovery, virulence;

Host demographics

All host demographics calculated here;

At their simplest, they might be:

$$\dot{S} = N(a - qN) - bS,$$

$$\dot{I} = -bI,$$

$$\dot{R} = -bR.$$

Within-host dynamics

Each individual has their own ODE system;

Internal state determines transmission, recovery, virulence;

ODEs

Transmission

Host demographics

All host demographics calculated here;

At their simplest, they might be:

$$\dot{S} = N(a - qN) - bS,$$

$$\dot{I} = -bI,$$

$$\dot{R} = -bR.$$

<u>Within-host dynamics</u>

Let $P_i(T_i)$ be the pathogen count of individual *i* for an infection of age T_i . Then:

$$\frac{dP_i}{dT_i} = rP_i \left(1 - \frac{P_i}{K}\right)$$
ODES

Example

Host demographics

Let S(t) and I(t) be the density of susceptible and infected individuals respectively, t days after the initial infection. Then:

$$\frac{dS}{dt} = N(a - qN) - bS$$
$$\frac{dI}{dt} = -bI$$
ODES

What can we track for each individual?

What can we track for each individual?

Within-host state

What can we track for each individual?

Within-host state

Infection history

What can we track for each individual?

Within-host state

Infection history

Who infects who?

Introduction

Hybrid methodology

What can we do?

What can we do?

CASE STUDY 1: Slow clearing pathogen

 rP_i

 dP_i

 dT_i

CASE STUDY 1: Slow clearing pathogen Within-host evolution

Evolue the growth rate, \boldsymbol{r}

Evolue the growth rate, r

At equilibrium, $P^* = K$, independent of r - (A)

0.30 Pathogen growth rate,

CASE STUDY 2: Possible recovery

$$\frac{dP}{dT_i} = re^{-\eta T_i} + \eta (P^* - P_i)$$

CASE STUDY 2: Possible recovery

$$\frac{dP}{dT_i} = re^{-\eta T_i} + \eta (P^* - P_i)$$

CASE STUDY 2: Possible recovery

$$\frac{dP}{dT_i} = re^{-\eta T_i} + \eta (P^* - P_i)$$

CASE STUDY 2: Possible recovery

Applications

$$\frac{dP}{dT_i} = re^{-\eta T_i} + \eta (P^* - P_i)$$

CASE STUDY 2: Possible recovery Phylogeny

150 base genotype

Neutral mutation

Applications

dP $\frac{dT_i}{dT_i} = re^{-\eta T_i} + \eta (P^* - P_i)$

CASE STUDY 2: Possible recovery Phylogeny

150 base genotype

Neutral mutation

To the future...

Additional host classes (exposed etc.). Interactions between pathogen and microbiome. Fitness to phylogeny.

Can multiple pathogens exist within a host? Transmission bottlenecks? Selection at multiple scales.

Spatial components

Phylogeny and space. Do we get different clusters? Can we trace backwards?

...and beyond

...and beyond

Random mutations.

Comparison of results with implicit WHDs - parasite/symbiont.

Comparison of results with implicit WHDs - parasite/symbiont.

Python package/GUI to easily simulate epidemics.

Comparison of results with implicit WHDs - parasite/symbiont.

Python package/GUI to easily simulate epidemics.

Comparisons with experimental data.

Comparison of results with implicit WHDs - parasite/symbiont.

Python package/GUI to easily simulate epidemics.

Comparisons with experimental data.

Tools for phylogenetics/tree reconstruction - TransPhylo package in R.

...and beyond

Random mutations.

Comparison of results with implicit WHDs - parasite/symbiont.

Python package/GUI to easily simulate epidemics.

Comparisons with experimental data.

Tools for phylogenetics/tree reconstruction – TransPhylo package in R.

Theoretical results – R_0 , fitness functions...

Thank you!

UNIVERSITY OF **OXFORD**

Efficient coupling of within- and between-host infectious disease dynamics C.A. Smith and B. Ashby Journal of Theoretical Biology

Ben Ashby

Simon Fraser University eco-evo theory

Kayla King

University of British Columbia

BIOLOGY

Questions to answer:

Questions to answer:

What effects do we observe with explicit WHDs?

Questions to answer:

What effects do we observe with explicit WHDs? Are explicit WHDs important for informing public health strategies?

Questions to answer:

What effects do we observe with explicit WHDs? Are explicit WHDs important for informing public health strategies?

Can we identify super-spreader events?

Questions to answer:

What effects do we observe with explicit WHDs? Are explicit WHDs important for informing public health strategies?

Can we identify super-spreader events?

Evaluation of the basic reproductive number.

Questions to answer:

What effects do we observe with explicit WHDs? Are explicit WHDs important for informing public health strategies?

Can we identify super-spreader events?

Evaluation of the basic reproductive number.

Infection trees

Reminder: Logistic pathogen growth

$$\frac{dP_i}{dt} = rP_i\left(1 - \frac{P_i}{K}\right)$$

Proxy for an infection which cannot be recovered from.

Reminder: Logistic pathogen growth

$$\frac{dP_i}{dt} = rP_i\left(1 - \frac{P_i}{K}\right)$$

Proxy for an infection which cannot be recovered from.

DOI: 10.1086/676927

Reminder: Logistic pathogen growth

$$\frac{dP_i}{dt} = rP_i\left(1 - \frac{P_i}{K}\right)$$

Proxy for an infection which cannot be recovered from.

Reminder: Logistic pathogen growth

$$\frac{dP_i}{dt} = rP_i\left(1 - \frac{P_i}{K}\right)$$

Proxy for an infection which cannot be recovered from.

Calculating R_0

Start *M* identical simulations with one infected individual until they die/recover;

Count the number of secondary cases they cause;

Average over sims.

Calculating R_0

Start *M* identical simulations with one infected individual until they die/recover;

Count the number of secondary cases they cause;

Average over sims.

Can track infection networks

Can track infection networks

Can track infection networks

Ecology

Ecology

Ecology

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

What effects can we incorporate with explicit WHDs?

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

What effects can we incorporate with explicit WHDs?

Conflicting selection

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

What effects can we incorporate with explicit WHDs?

Conflicting selection

Super infection

Normally, we use implicit WHDs with a trade-off to evaluate evolutionary outcomes.

What effects can we incorporate with explicit WHDs?

Conflicting selection

Super infection

R Individual mutations

What effects can we incorporate with explicit WHDs?

$$\frac{dP_{ij}}{dT_i} = r_j P_{ij} \left(1 - \frac{P_{ij}}{K} \right)$$

What effects can we incorporate with explicit WHDs?

$$\frac{dP_{ij}}{dT_i} = r_j P_{ij} \left(1 - \frac{P_{ij}}{K} \right)$$

Note that $P_{ij}^* = K$ is not a function of r_j . Therefore, should be no selection at steady state.

What effects can we incorporate with explicit WHDs?

$$\frac{dP_{ij}}{dT_i} = r_j P_{ij} \left(1 - \frac{P_{ij}}{K} \right)$$

Note that $P_{ij}^* = K$ is not a function of r_j . Therefore, should be no selection at steady state.

Steady state

0.30

0.5

0.5

0 30

Pathogen growth rate, r

10000

What effects can we incorporate with explicit WHDs?

10000

Evolutionary time

$$\frac{dP_{ij}}{dT_i} = r_j P_{ij} \left(1 - \frac{P_{ij}}{K} \right)$$

Note that $P_{ij}^* = K$ is not a function of r_j . Therefore, should be no selection at steady state.

Since we have individuals, we can track genetic data and trace an exact phylogeny.

Since we have individuals, we can track genetic data and trace an exact phylogeny.

AAAAAAGA AAAAAAGC AAAAAAGA AAAAAAGA AAAAAAAGA AAAAAAAGA AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAAA AAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
--

500 individuals, 8b genome, 10^{-4} mutation rate.

Since we have individuals, we can track genetic data and trace an exact phylogeny.

500 individuals, 8b genome, 10^{-4} mutation rate.

5000 individuals, 150b genome, 5×10^{-4} mutation rate.

Since we have individuals, we can track genetic data and trace an exact phylogeny.

