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Motivation

Reaction-diffusion systems are important tools for the modelling of
many biological systems. Formulated in general by Alan Turing in his paper

“the chemical basis of morphogenesis” [Turing, 1952], they are useful for
modelling travelling waves, cell migration and pattern formation
amongst many other phenomena. They combine the movement of particles
down a concentration gradient (diffusion) with the interaction of particles

within the system (reactions).

One such example is that of piebaldism in mice. During the embryonic
development, melanocytes migrate from the dorsal to the ventral. Piebaldism
is the failure of the cells to do this properly, resulting in a white belly spot.

Modelling paradigms

There are many different ways to model reaction diffusion systems:
Macro scale: partial differential equations (PDEs) – valid for high copy

numbers, can be simulated quickly. Lack stochastic variation.
Meso scale: compartment-based models – include stochastic variation but

do not record exact particle locations. Costly to simulate.
Micro scale: individual-based model – positions of all particles are
tracked. Diffuse using a Brownian motion, react using any suitable

technique, such as the λ-ρ method [Lipková et al., 2011].

Paradigm Type Particle numbers Simulation speed
Macro Deterministic High Fast
Meso Stochastic Medium/Low Medium/Slow
Micro Stochastic Low Slow

Spatial hybrid modelling

The aim of spatial hybrid modelling is to compliment the strengths of
different representations, whilst limiting their deficiencies, by utilising

them in different regions of the computational domain.

Spatial hybrid models have been extensively studied:

• [Yates and Flegg, 2015] (macro → meso) [pseudo-compartment
method].

• [Flegg et al., 2015] (meso → micro) [ghost cell method].

• [Franz et al., 2013] (macro → micro)

However, there is little work on hybrid methods which combine the PDE to
the individual-based dynamics.

Auxiliary region method (ARM)

A new method for coupling the PDE and individual-based dynamics for
reaction-diffusion systems, using an “auxiliary region” which bridges

the gap between the coarsest (PDE) and finest (Brownian) resolutions.

Domain: Ω = (0, L), split into two disjoint regions ΩP (PDE) and ΩB
(Brownian).
Interface: Single point I = Ω̄P ∩ Ω̄B.
Auxiliary regions: ΩARP ⊆ ΩP and ΩARB ⊆ ΩB, each of width h.

PDE evolution: Second-order finite difference approximation to the PDE
∂tu = D∂xxu +R(u) plus zero-flux boundary conditions.
Brownian position evolution: Update using fixed time-stepping algo-
rithm X(t + δt) = X(t) +

√
2Dδtξ with ξ ∼ N(0, 1) and reflective bound-

aries.
Auxiliary region evolution: Use a compartment-based method, simu-
lating using a stochastic simulation algorithm (SSA) such as the Gillespie

direct method [Gillespie, 1977].

The algorithm proceeds as follows (for any given time):

1. Find the time until the next event within the auxiliary regions occurs.

2. If this is less than the time until the next PDE/Brownian update, find the corresponding event and
enact it.

3. Otherwise, evolve the PDE and Brownian domains.

4. Update time and return to step 1.

Reactions: All reactions in ΩP and ΩB\ΩARB completed using an appropriate method for their regime. Within ΩARB , reactions
are completed using the compartment-based model.

Results

Results from the algorithm:
Initial condition: All particles on left hand
side – demonstrates that the interfacial flux is
correct.
What does this show?

• The algorithm matches that of the mean-field
model (solution of the PDE)⇒ Process does
not “see” the interface.

•Reaches and maintains the steady state.

• Flux over the interface is correct.

Error analysis

The histogram distance error (HDE) is a measurement of how
similar the hybrid method is to the equivalent fully Brownian simulation:

HDE(t) =

N∑
i=1

∣∣∣uhi (t)− ubi(t)
∣∣∣.

Here, uhi (t), ubi(t) are the densities of the hybrid and fully Brownian
solutions at mesh-point i of the common histogram mesh with

N points.

Parameter sensitivity

The error is only large when the value of the width of the auxiliary
regions is small and the time step is large. This is due to the

diffusive limit, which requires the quantity δt/h2 to be small.

Conclusions

Created a hybrid method which couples a PDE for reaction-diffusion
systems to its corresponding individual-based model.

Hybrid method concurs with the mean-field solution – the solution to the
PDE which arises from forming the Fokker-Planck equation related to the

SDE for the Brownian motion.
The HDE is low over time ⇒ emphasises the agreement.

The method is relatively insensitive to parameter choices.

Future work

Adaptive interfaces – interfaces that move with the density.
SPDEs – Swap the PDE for an SPDE to correct for variance problems.

Growing domain – Add biological realism by allowing the domain
to grow.
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J. Lipková, K.C. Zygalakis, S.J. Chapman, and R. Erban. Analysis of brownian dynamics simulations of reversible bimolecular reactions. SIAM J. Appl. Math., 71(3):714–730, 2011.

A.M. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B., 237(641):37–72, 1952.

C.A. Yates and M.B. Flegg. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion. J. Roy. Soc. Interface., 12(106):20150141, 2015.

∗c.smith3@bath.ac.uk


