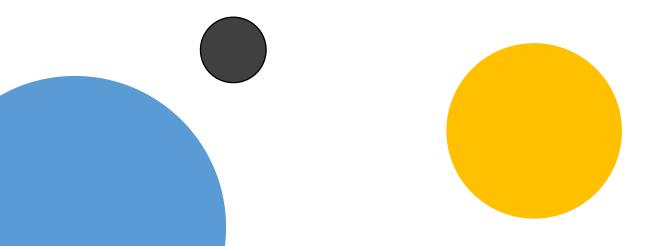
The auxiliary region method for coupling **PDE and Brownian**based dynamics for reaction-diffusion systems

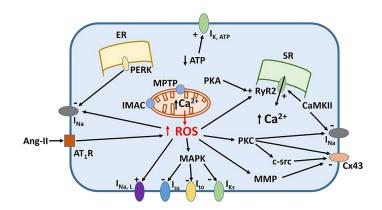
Cameron Smith (Cohort 3)

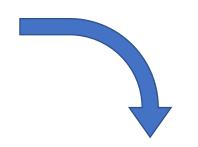
SAMBa Conference 2019 08/07/19

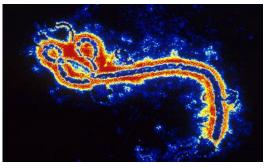
- Reaction-diffusion systems
- Spatially extended hybrid methods
- The auxiliary region method (ARM)



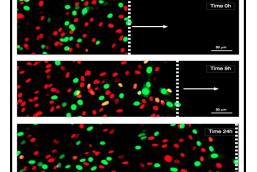
Reaction-diffusion systems (SAMBa)

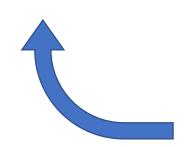


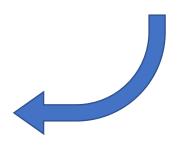


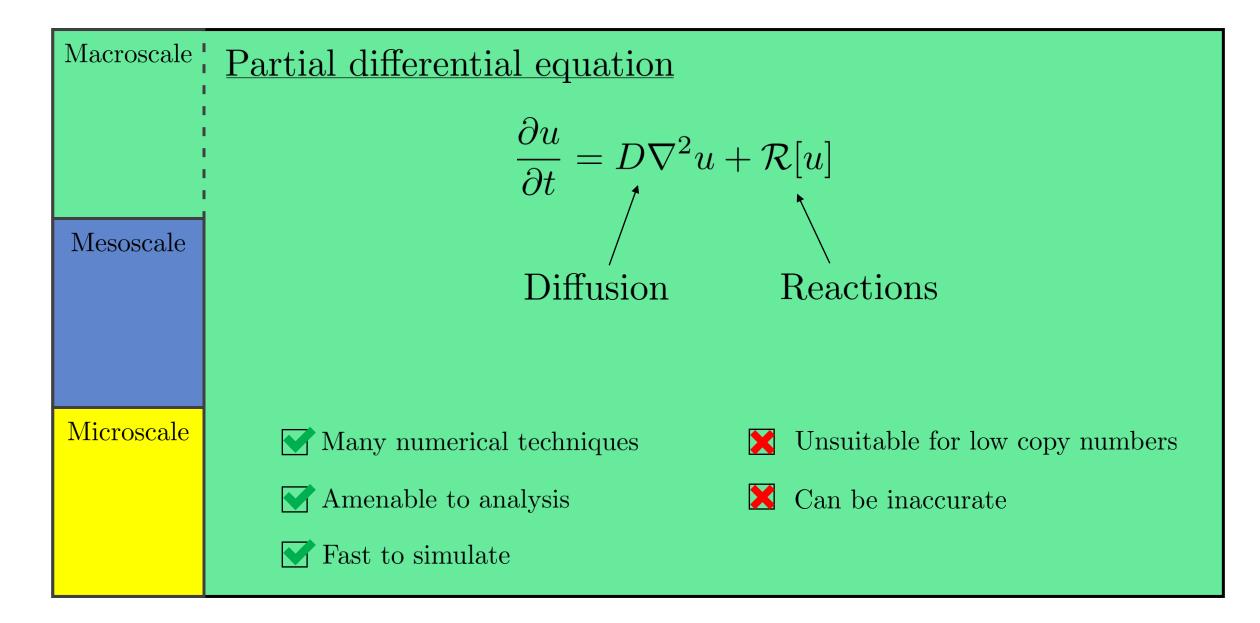


Reactiondiffusion

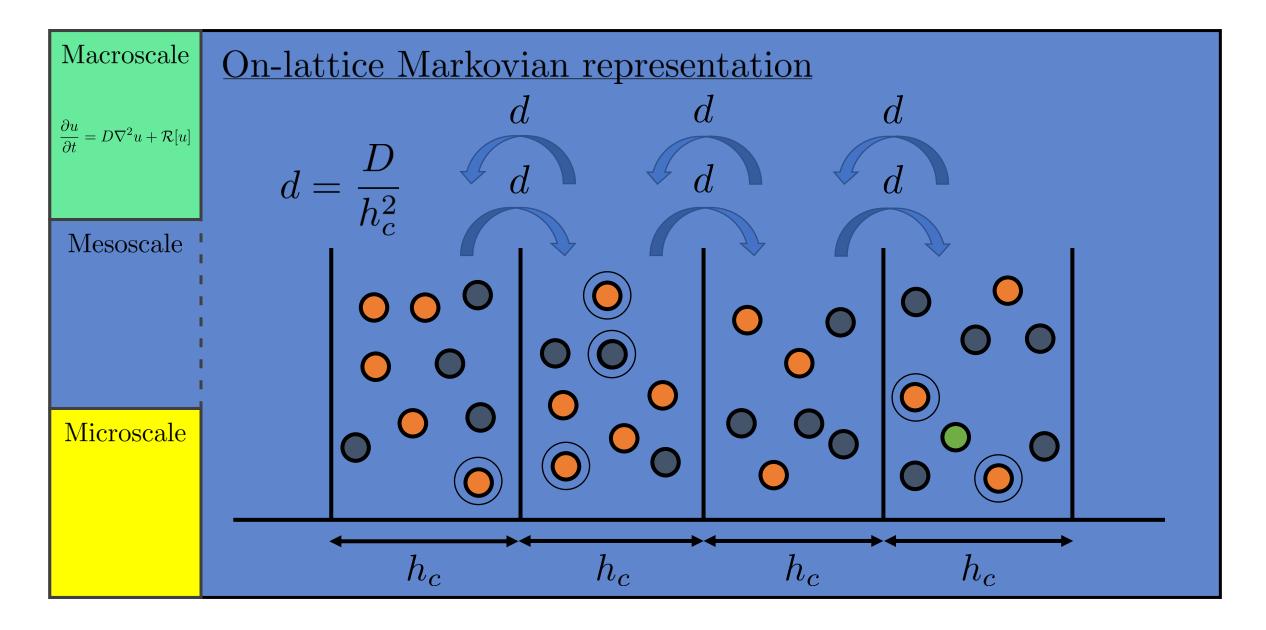


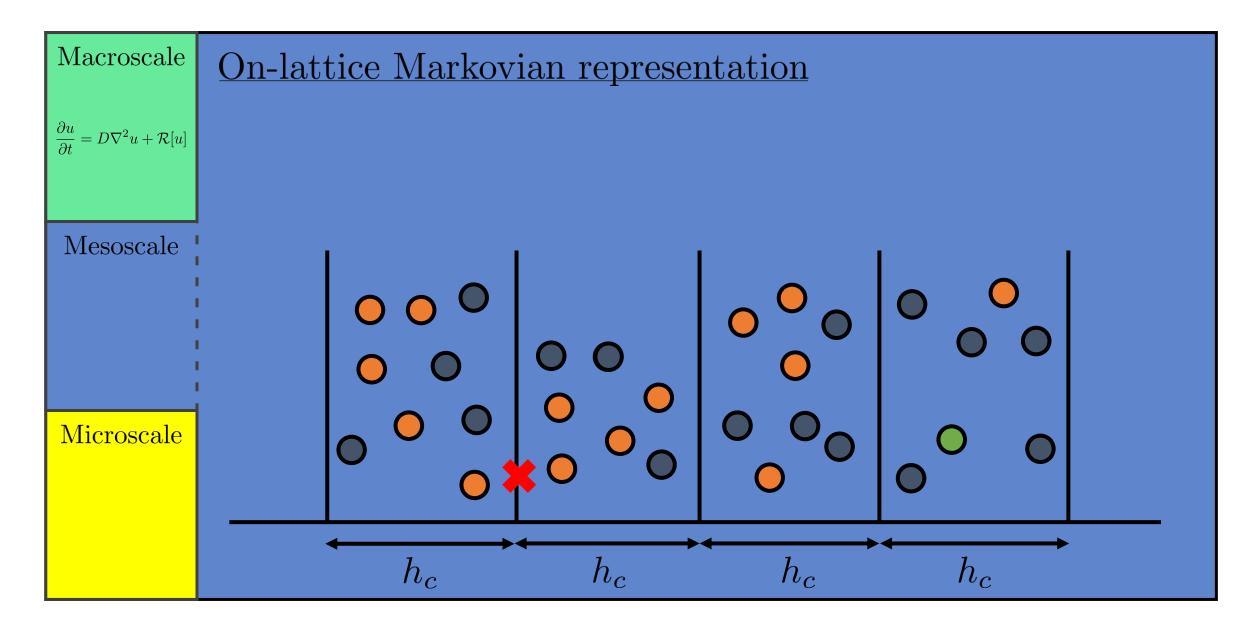


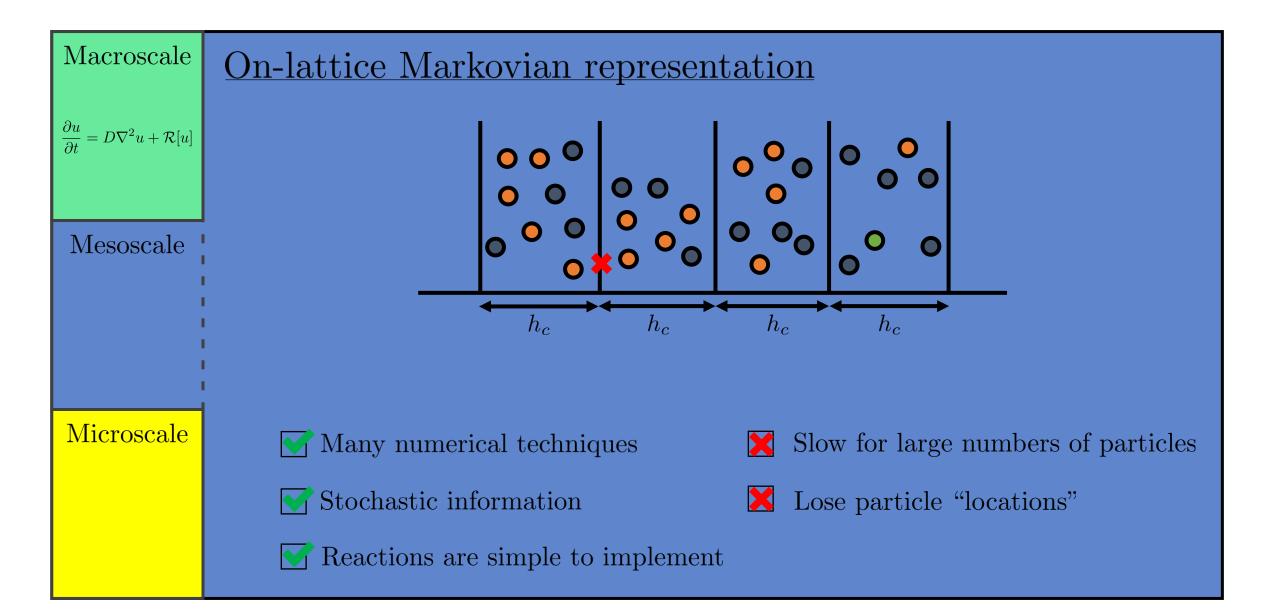


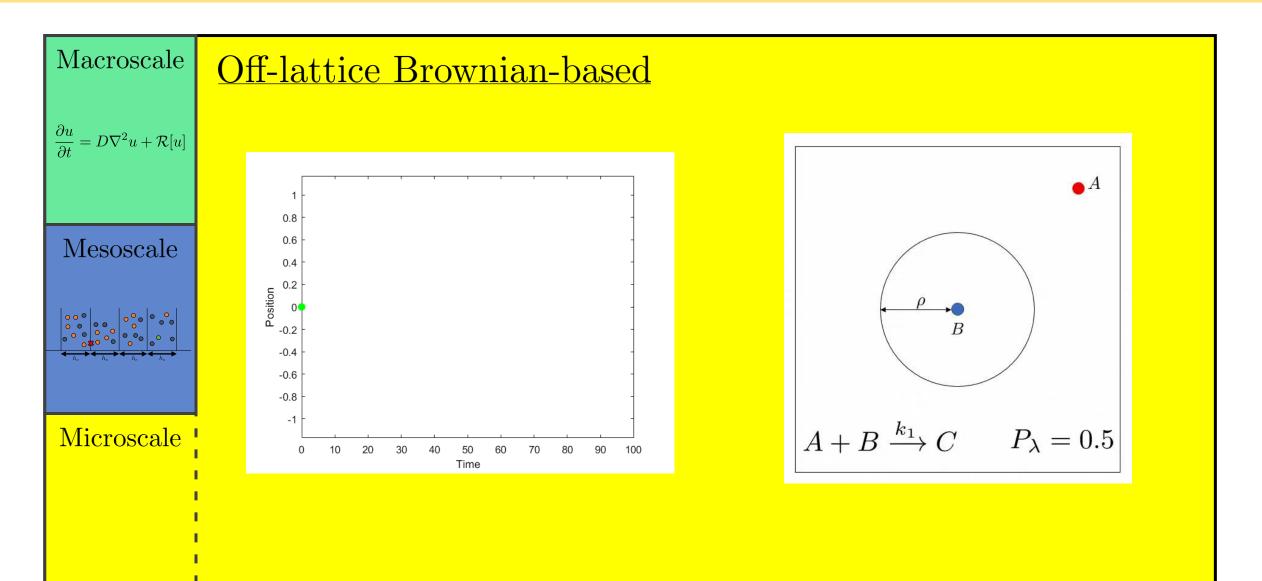


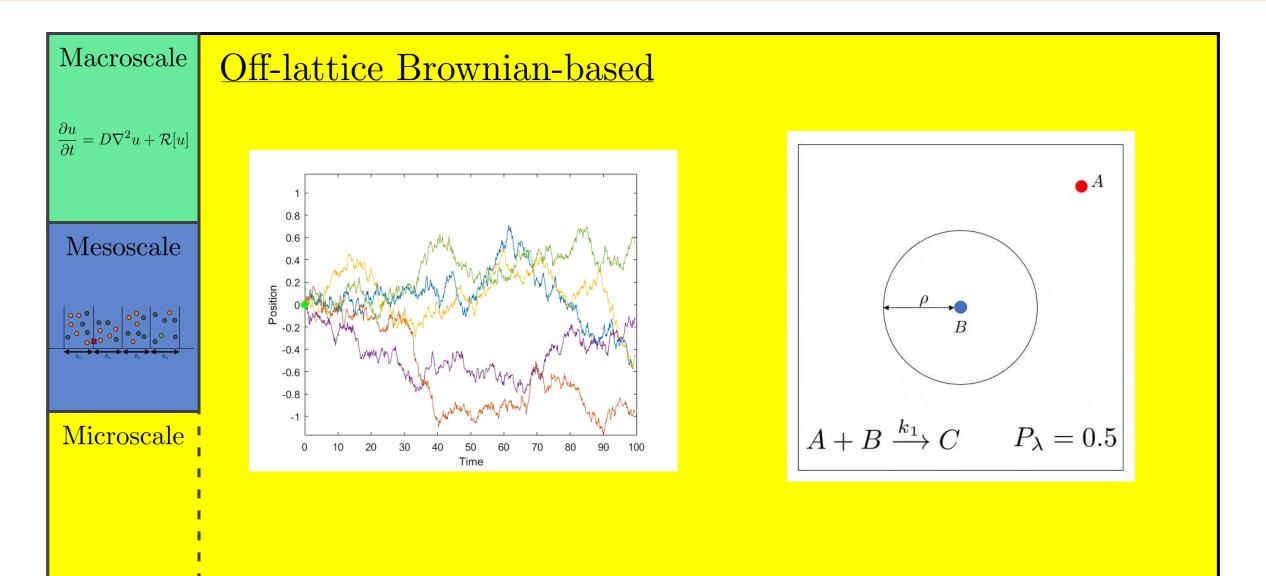


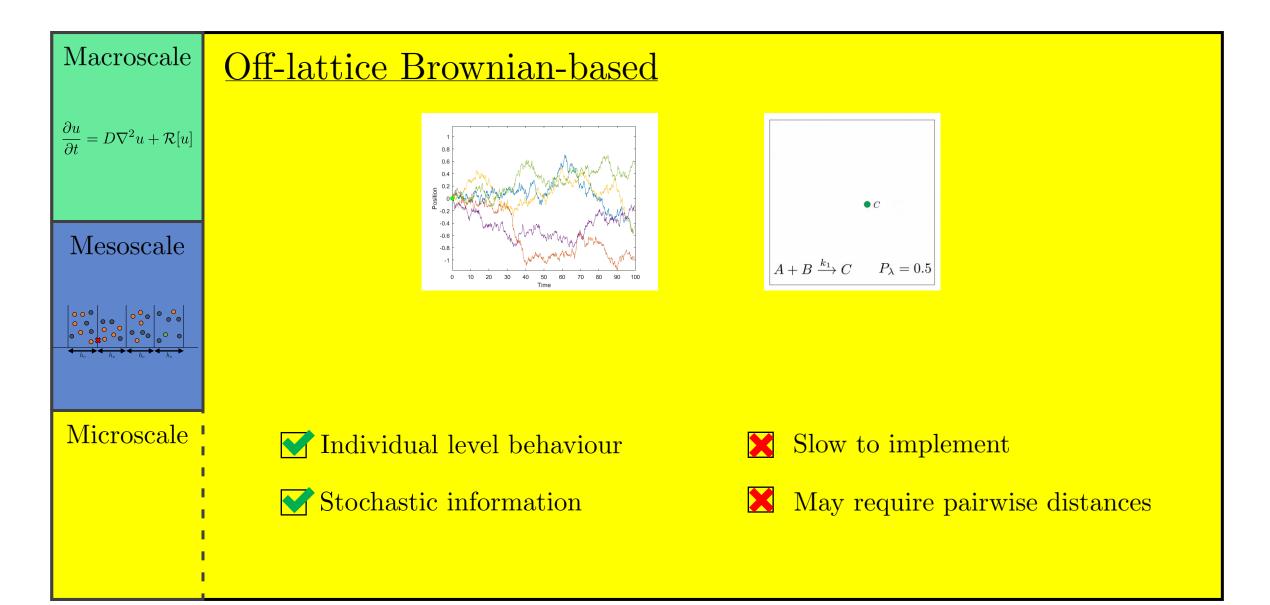


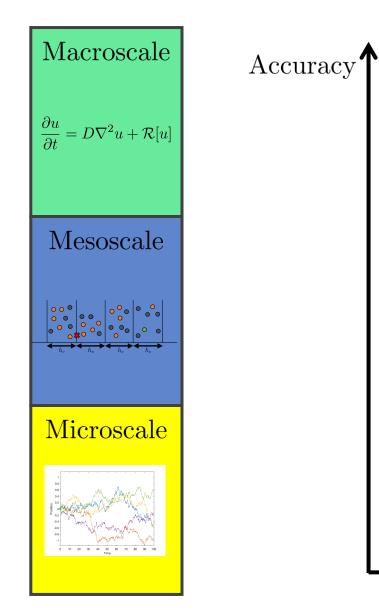


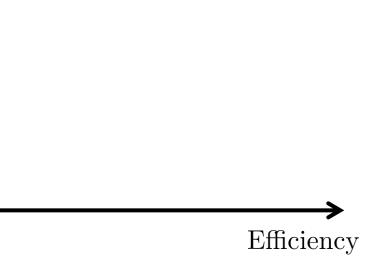


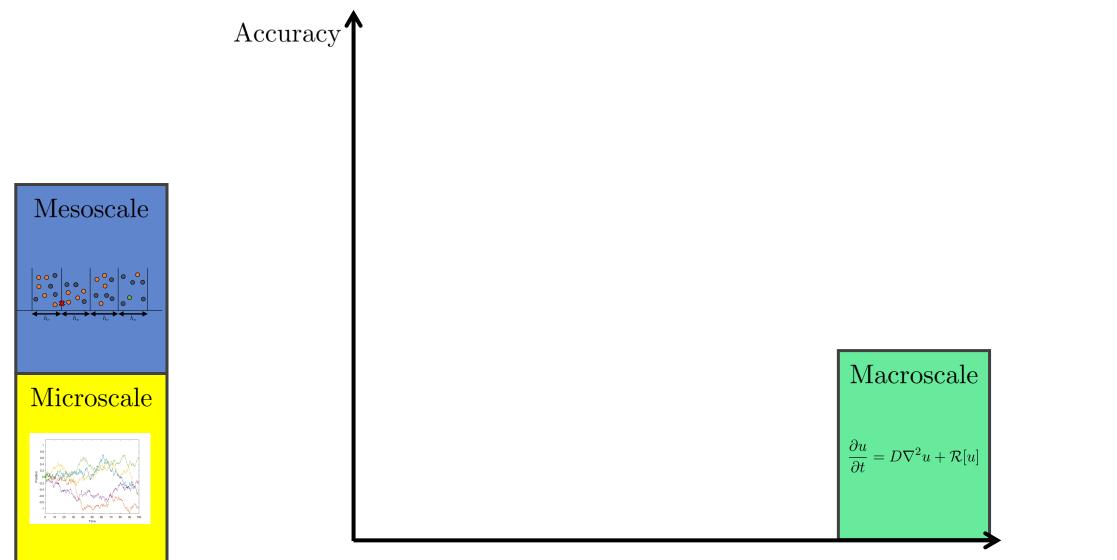




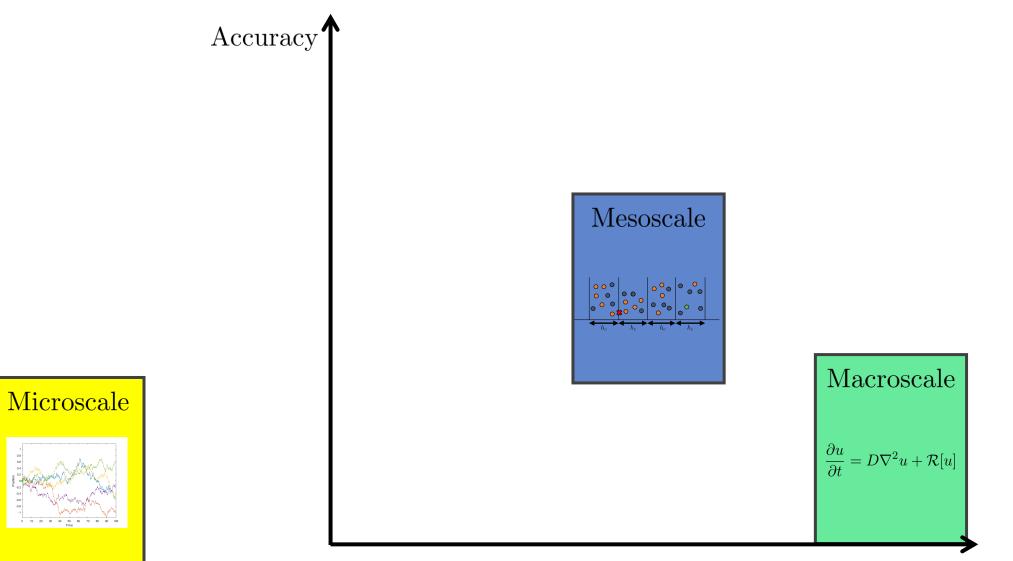




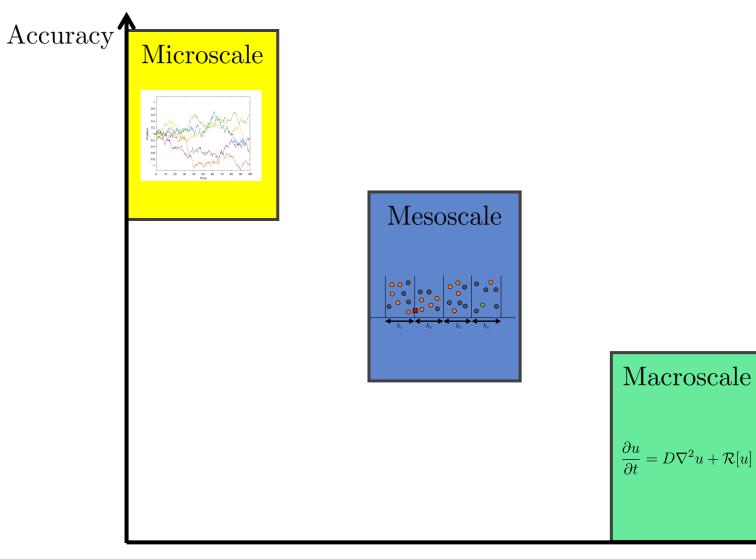




Efficiency



Efficiency

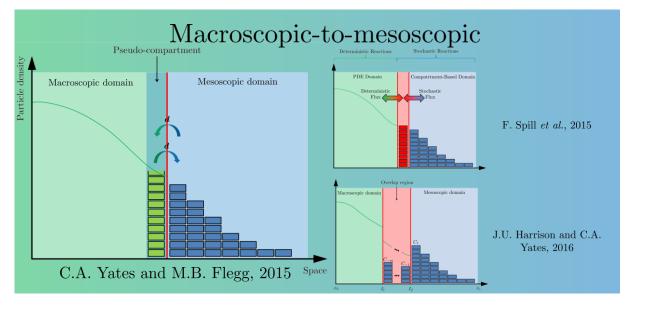


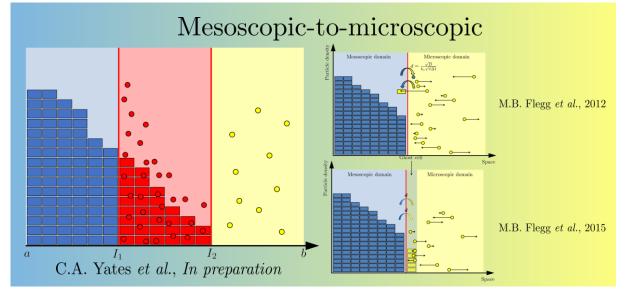
Efficiency

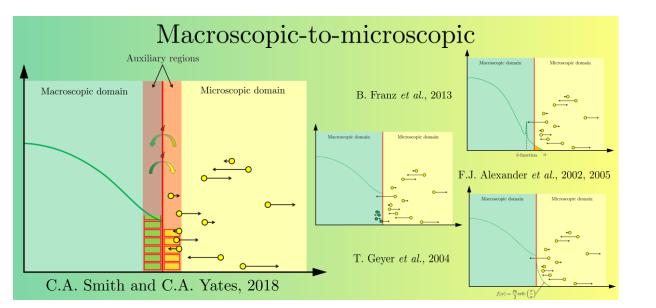
... spatially extended hybrid methods employ different modelling paradigms at different scales in order to compliment the strengths and negate the weaknesses of each.

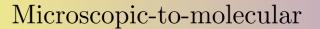
> C.A. Smith and C.A. Yates, 2018 Spatially extended hybrid methods: a review

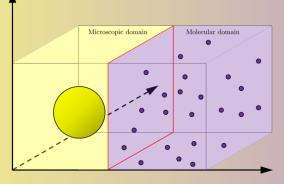
Many, many examples!







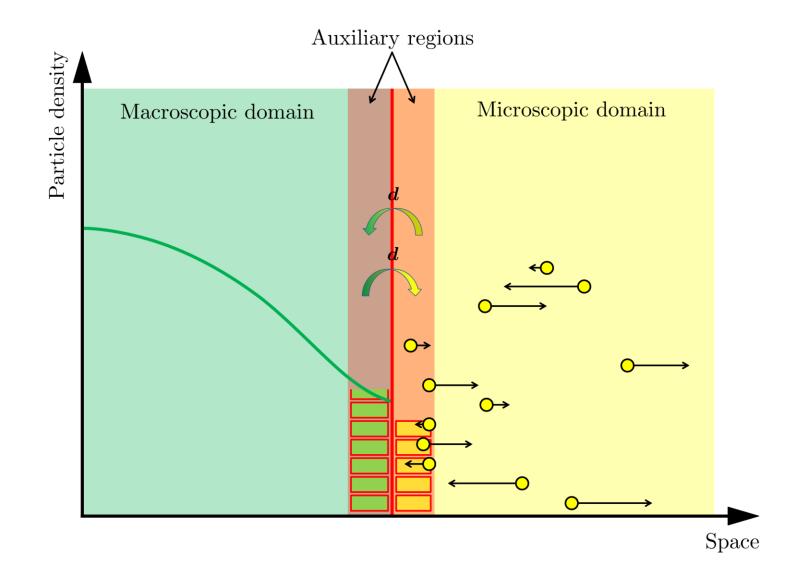




R. Erban, 2014

The auxiliary region method (SAMBa

The auxiliary region method

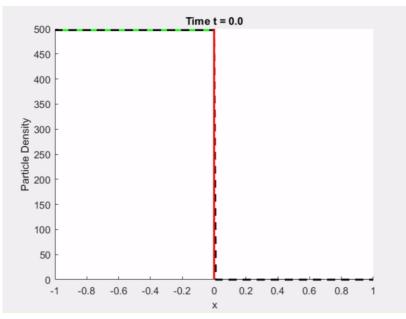


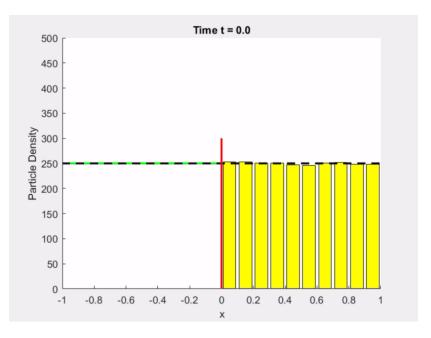
Basic algorithm

Let the PDE/Brownian update step be Δt , and t_{Δ} be the next PDE/Brownian update time.

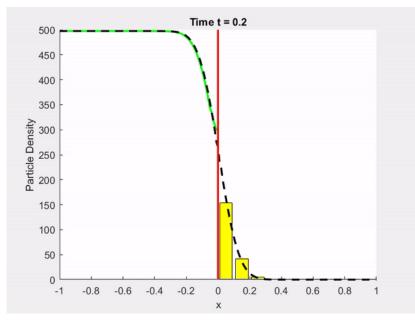
- 1) Find the time until the next event within the auxiliary regions occurs. Call this t_a .
- 2) If this is less than the time until the next PDE/Brownian update (i.e. if $t_a < t_{\Delta}$), find the corresponding event and enact it.
- 3) Otherwise (i.e. if $t_{\Delta} < t_a$), evolve the PDE and Brownian subdomains.
- 4) Update time and return to step 1.

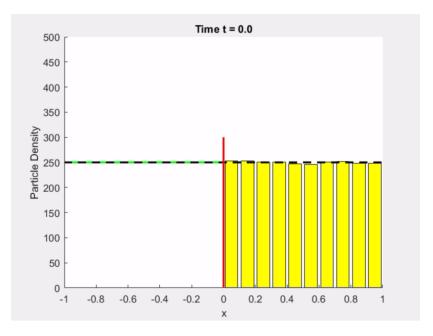
Pure diffusion $\begin{aligned} \frac{\partial u}{\partial t} &= D\nabla^2 u \\ \frac{\partial u}{\partial x}\Big|_{x=-1} &= 0 \text{ and } \left. \frac{\partial u}{\partial x} \right|_{x=1} &= 0 \\ u(x,0) &= \begin{cases} 500 & x \in [-1,0) \\ 0 & x \in [0,1] \end{cases} \end{aligned}$



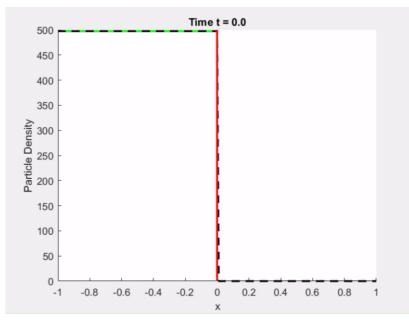


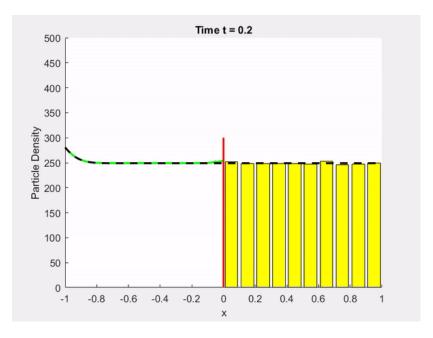
Pure diffusion $\begin{aligned} \frac{\partial u}{\partial t} &= D\nabla^2 u \\ \frac{\partial u}{\partial x}\Big|_{x=-1} &= 0 \text{ and } \left. \frac{\partial u}{\partial x} \right|_{x=1} &= 0 \\ u(x,0) &= \begin{cases} 500 & x \in [-1,0) \\ 0 & x \in [0,1] \end{cases} \end{aligned}$



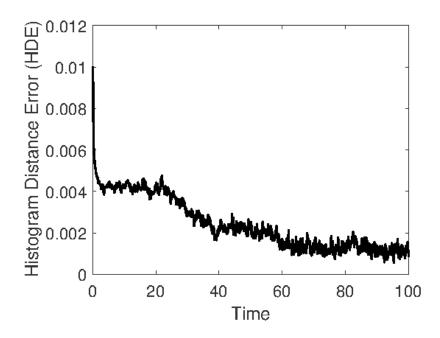


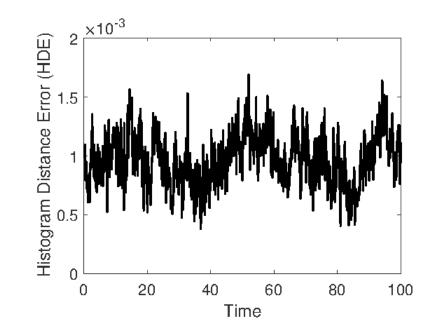
Pure diffusion $\begin{aligned} \frac{\partial u}{\partial t} &= D\nabla^2 u \\ \frac{\partial u}{\partial x}\Big|_{x=-1} &= 0 \text{ and } \left. \frac{\partial u}{\partial x} \right|_{x=1} &= 0 \\ u(x,0) &= \begin{cases} 500 & x \in [-1,0) \\ 0 & x \in [0,1] \end{cases} \end{aligned}$





Pure diffusion $\begin{aligned} \frac{\partial u}{\partial t} &= D\nabla^2 u \\ \frac{\partial u}{\partial x}\Big|_{x=-1} &= 0 \text{ and } \left. \frac{\partial u}{\partial x} \right|_{x=1} &= 0 \\ u(x,0) &= \begin{cases} 500 & x \in [-1,0) \\ 0 & x \in [0,1] \end{cases} \end{aligned}$





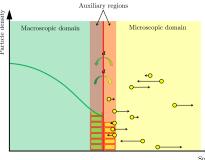
Reaction-diffusion systems may be modelled in different ways, each with complimentary advantages and disadvantages.

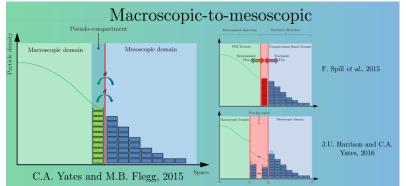
Summary

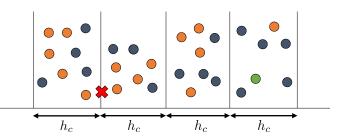
Macroscopic-to-mesoscopic Mesoscopic domain F. Spill et al., 2015

Hybrid methods combine these to form accurate and efficient methods. There are many examples.

auxiliary region method combines PDE and The Brownian-based approaches. Able to simulate reactiondiffusion systems accurately.







Thank you for your attention.

Any questions?

This work is joint with Kit Yates.

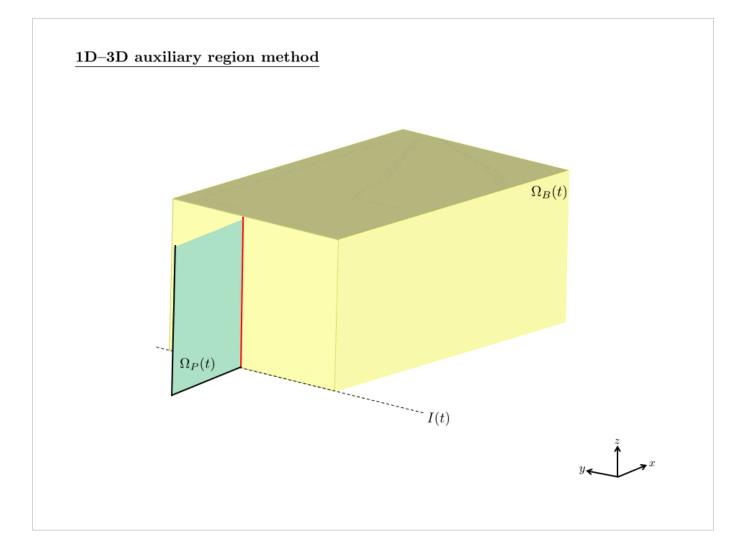
Get in touch:

@C_A_Smith50

c.smith3@bath.ac.uk

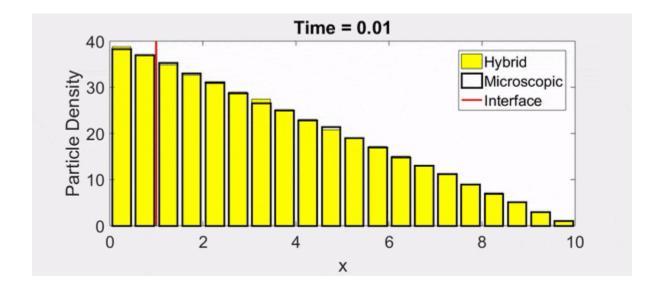
https://people.bath.ac.uk/cs640/

1D-3D ARM



Results: 1D-3D ARM

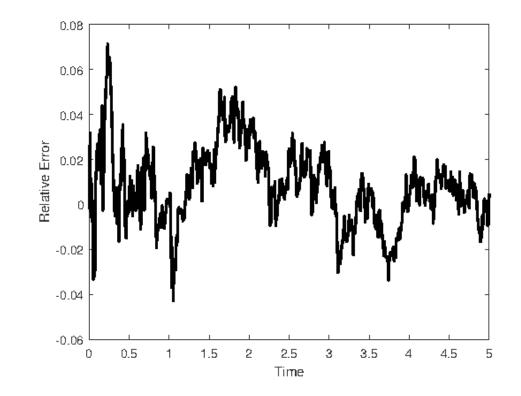
Reaction system: $2A \xrightarrow{\kappa_1} \emptyset \xrightarrow{\kappa_2} A$ Corresponding PDE: $\frac{\partial u}{\partial t} = D\nabla^2 u - \frac{\kappa_1}{L_y L_z} u^2 + \kappa_2 L_y L_z$ Moment closure (Poisson) $\langle A \rangle = \mathbb{V}\mathrm{ar}(A)$



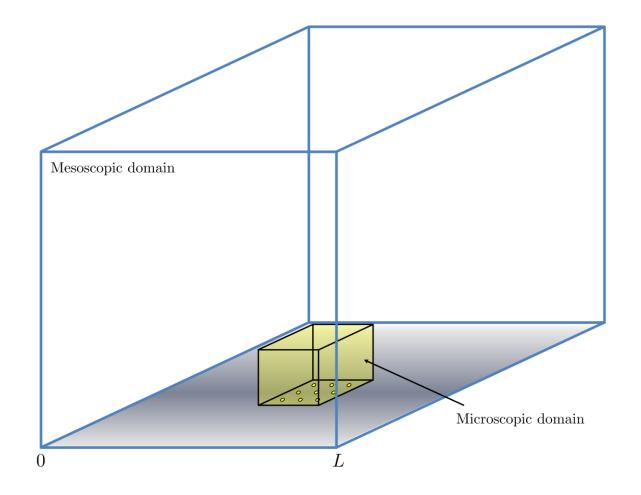
Error: 1D-3D ARM

$$E_{\rm Rel}(t) = rac{N_{\rm M}(t) - N_{\rm H}(t)}{N_{\rm M}(t)}.$$

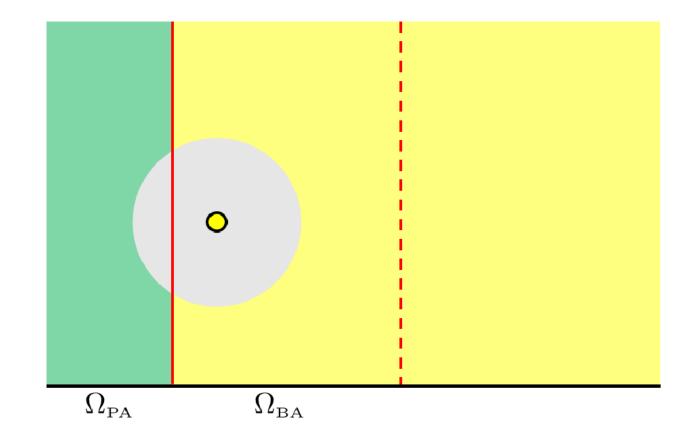
 $N_{\rm H}(t)$ is the average number of particles in the final binning width of the hybrid method at time t, and $N_{\rm M}(t)$ is the same for the fully microscopic simulation.



Calcium induced calcium release



Reactions in the Brownian AR



Summary of models

Scale	Advantages	Disadvantages
Macroscopic (Mean-field)	Fast to compute solutions. Suitable for high copy numbers. Amenable to analysis.	Inaccurate for low particle numbers. Mean-field dynamics diverge from individual-level behaviour for high-order reactions.
Mesoscopic (Compartments)	Fast for low copy numbers. Represents the individual-level behaviour.	Can be slow for large copy numbers. Does not retain precise locations of particles or particle identity.
Microscopic (Brownian-based)	Most accurate representation of the three.	Slow to compute reactions. Impractical for large numbers of particles.