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Introduction

In general we cannot (or do not wish to) model multi-
scale processes in full mechanistic detail, and even 
simulating such models becomes computationally 

intractable. Can we come up with ways of extracting the 
essence of lower-scale models so that they can be 

embedded into higher-scale models efficiently (Mideo et 
al., 2008)?

Seven challenges in modeling pathogen dynamics within-host and across scales
Gog et al. (2015)

N. Mideo et al. (2008) Linking within- and between-host dynamics in the evolutionary 
epidemiology of infectious diseases, Trends in Ecology and Evolution
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The infection process is individual

Infection: Depends on transmission bottlenecks, how infectious 
was the infector.

Pathogen replication: Multiple strains, initial dosage.

Immune response: Cross-immunity, vaccination, immuno-
compromised.

These are “outcomes”

They are functions of an individual, not a 
universal measure of everyone.

 
They impact population level dynamics and will 

be different for each individual.
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might be:
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Transmission

𝛽 𝑃𝑖 = 𝛽1𝑃𝑖 Let 𝑆 𝑡  and 𝐼(𝑡) be the 
proportion of susceptible 
and infected individuals 
respectively, 𝑡 days after 
initial infection. Then:

𝑑𝑆

𝑑𝑡
= 𝑁 𝑎 − 𝑞𝑁 − 𝑏𝑆

 

𝑑𝐼

𝑑𝑡
= −𝑏𝐼
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What can we track for each individual?

Within-host state

Infection history

ACGTCAA
ACGTGAA

Mutation history

Who infects who?

Timings of infection

Which variant?
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