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Aphid host
Parasitic wasp

Protective bacteria: Hamiltonella 
defensa
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Defensive symbionts as biocontrols?

Can we use the idea of defensive symbiosis as a means of biocontrol
to combat harmful pathogens?

Advantage

Unlike vaccines, can evolve 
against pathogen evolution

Disadvantage

Have potential to be 
transmitted – ethical issues

We will use a mathematical analysis to understand the viability of  
such a biocontrol in a host population
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Tolerance shields the host from the harmful effects of the pathogen.

Two forms of tolerance – “Fecundity tolerance” and “mortality tolerance”.

Fecundity tolerance prevents new births with the pathogen, mortality tolerance reduces 
virulence.

Resistance protection is all about making the host more resistant to infection

This may take the form of a reduction in transmission when harbouring the defensive symbiont 
compared to without 



Modelling – a glossary

Phenotype: An observable trait (average height, virulence of pathogen)

Resident phenotype: The trait which sets the environment

Mutant phenotype: The trait trying to invade into an environment (shorter, more virulent)

Fitness: How good is the mutant at establishing into the resident environment?

Selection gradient: Derivative of the fitness (wrt mutant phenotype)

Mutation: A change to the phenotype (i.e. an observable change, average height increases)
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Trade-offs

Choose how our evolving parameter, 
say 𝑥, alters other ecological 

parameters.

Ecological dynamics

Calculate the steady state number of 
individuals using 𝑥𝑟  as a (resident) trait value 

using ODEs. We call this the resident 
population, 𝑵∗.

Invasion fitness

Calculate the invasion 
fitness, 𝑤, for a rare 
mutant, 𝑥𝑚, which is 

similar phenotypically to 
the resident at steady 

state. Calculate the 
selection gradient, 𝑠:

𝑤 ≡ 𝑤 𝑥𝑚, 𝑥r, 𝑵∗ ,

 𝑠 𝑥 = ቤ
𝜕𝑤

𝜕𝑥𝑚 𝑥=𝑥𝑚=𝑥𝑟

.

Singular strategies

Find values for the traits such that 

𝑠 𝑥 = 0. These are singular 
strategies and denote potential 

evolutionary endpoints.

Stability analysis

Using higher order derivatives of the 
invasion fitness, we can determine 

the behaviour at singular strategies. 
For example:

อ
𝜕2𝑤

𝜕 𝑥𝑚
2

𝑥=𝑥𝑚=𝑥𝑟

< 0

denotes evolutionary stability.
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Transmissibility
𝛽𝑃 > 0

Evolving parameters
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𝛼𝐵 𝑦, 𝛽𝑃 = 𝛼𝐷

 + 1 − 𝑦 𝛼𝑃(𝛽𝑃)
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Other protection types
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ce

Tolerance shields the host from the harmful effects of the parasite.

Two forms of tolerance – “Fecundity tolerance” and “mortality tolerance”.

Fecundity tolerance prevents new births with the parasite, mortality tolerance reduces virulence.
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Conclusions

Subject #796 Subject #727

The behaviour of defensive symbionts in the 
presence of parasites causes a range of complex 
behaviour.

The type of protection matters, and more work 
needs to be done to establish if consistent positive 
host outcomes are possible.

If you fancy becoming a cranberry farmer…

…you need to make friends with spiders!



Thank you for listening

Ben Ashby
Assoc. Professor 

Dept. of Mathematics
Simon Fraser University

Kayla King
Professor 

Dept. of Biology
University of British Columbia
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